LIGHTNING: EARTHING ELECTRODES HARMONIC RESPONSE

AGUADO M. HERMOSO B. SENOSIAIN V. Public University of Navarra

MARTÍNEZ-CID P.

Iberdrola

(Spain)

1.- Abstract. The grounding behavior (resistive, capacitive, inductive) to a lightning discharge is related to the electrodes geometrical dimensions [I], shapes, and the soil characteristics (resistivity ρ , permittivity ε , permeability μ). The border between the capacitive and inductive behaviors corresponds to a frequency value (critical frequency f_c), analyzed with the T line model. A practical relation (f_c , ρ /I) is obtained from variable frequency tests made over different electrodes.

2.- Introduction. To analyze the response of a ground electrode when a lightning discharge is scattered, we use the T line model (fig 1):

Fig.1. T line model

The expression for the input impedance is:

$$Z = \frac{jL\omega}{2} + \frac{1}{Y} = \frac{jL\omega}{2} + \frac{R_E}{1 + jR_EC\omega} = \frac{jL\omega}{2} + \frac{R_E(1 - jR_EC\omega)}{1 + R_E^2C^2\omega^2} =$$

$$\frac{R_E}{1+R_E^2C^2\omega^2}+j\omega\frac{\left(\frac{L}{2}-R_E^2C+\frac{R_E^2C^2L\omega^2}{2}\right)}{1+R_E^2C^2\omega^2}$$

in which one the complex part value is function of the sing of (L/2-RE²C), if:

- (L/2-RE²C)>0 there is an inductive behavior for all frequencies.
- -(L/2-Re²C)<0 there is capacitive behavior for the region between $\omega = 0$, $\omega = \omega_c$
- -(L/2-RE²C)=0 resistive behavior for all frequencies.

Fig.2 Zi Capacitive-Inductive behavior

For the last case the ω_c and f_c values are:

$$\omega_r = \sqrt{\frac{2R_E^2C - L}{R_E^2C^2L}} \qquad f_r = \frac{1}{2\pi} \sqrt{\frac{2R_E^2C - L}{R_E^2C^2L}}$$

High Voltage Engineering Symposium, 22–27 August 1999 Conference Publication No. 467, © IEE, 1999

3.- Critical Frequency. Theoretically, from the f_c expression, one can choose values for R_E , L and C in a way that the grounding system works in capacitive zone for lightning discharge (1-2 Mhz.) [4] Taking in account the values of R_E , L and C are functions of soil characteristics (ρ, μ, ε) and electrodes shape and dimension, write can $f_c =$ $f_{\epsilon}(\rho, \mu, \epsilon, l)$. To evaluate this expression, not in a theoretically way, we have done field tests. According the fall voltage method (fig.3) we injected an ac current wave in 1 using frequency multifunction waveform synthesizer Rohde and Schwarz with output impedance of 50 Ω and a coaxial wire RG58U. We measured the voltage V (figure 4 to 6) in different electrodes and soils with a Fluke99 Scopemeter.

Fig.3. Impedance measurement circuit

We linked the f_c values to ρ/I ones, (I electrode length). In the lasts tests (fig.7) we have recorded the voltage and current

simultaneously. The current (A) has been measured by a coupled current probe A6312-DC and a current probe amplifier AM508B.

The three firsts tests are been made up through a project financed by the Spanish Railway Company RENFE, and the last one through another one financed by the Companies EHN, Gamesa Eólica and Iberdrola.

- Electrode 1: ρ=50 Ω.m, l=1,5m

Fig.4. Frequency response electrode 1

 f_c =50kHz, ρ /l=33,33

- Electrode 2: ρ =50 Ω m, 1=2m

 f_c =50kHz, ρ /l=25

- Electrode 3: ρ=200 Ωm, l=6m

Fig.6. Frequency response electrode 3

 $f_c = 20 \text{kHz}, \rho/l = 33,33$

- Electrode 4: ρ=800 Ωm, l=1,5m

Fig.7. Frequency response electrode 4

One can observe that at 10 MHz the current lag voltage.

 $f_c = 5 \text{ MHz}, \, \rho/l = 533,33$

Recording (f_c - ρ /l) we obtain fig.8

Fig.8. Relationship $f_c - \rho/1$

for 1-2 MHz the ratio ρ/l must between 120-220, and higher for higher frequencies scattered, existing a critical length (l_c) for every one f_c . If l is longer that l_c the electrode behavior is inductive.

Example: f_c 1MHz, $\rho/l = 120$ $\rho(\Omega \cdot m) 300 500 - 1000$ $l_c(m) 2.5 - 4.17 - 8.333$ figures according with obtained in [3]

4.- Conclusions.

- The border between the capacitive and inductive behavior for a grounding system is related to the critical frequency.
- The critical frequency f_c is a function of soil characteristics and electrode dimensions $(\rho, \varepsilon, \mu, 1)$.

- There is a relation between f_c and ρ/l . Are necessary more tests (different electrodes shapes and lengths, soils) to consolidate the relation.
- For each f_c there is an electrode critical length (l_c) ; for $1>l_c$ the electrode behavior is inductive.

5.- Bibliography

- [1] CIGRE 33.01. Guide to Procedures for Estimating the Lightning Performance of Transmission Lines. CIGRE, Oct. 91.
- [2] Gary C.; The Earthing Impedance of Horizontally Buried Conductors.

 Congress Lightning and Mountains 1994,

 Chamonix (France)
- [3] Bourg S., Sacepe B., Debu T.; Deep Earth Electrodes in Highly Resistive Ground; Frequency Behavior. Congress Lightning and Mountains 1997, Chamonix (France).
- [4] Aguado M., Hermoso B., Senosiain V., Martínez Cid P.; Harmonic Impedance of Earthing Electrodes. Lines T Model. CIGRE; SC 33 International Conference, Zagreb, Croatia, September

1998.

6. Address of Authors

Dr. Blas Hermoso, D. Vicente Senosian,
Dña. Mónica Aguado School of Industrial
Engineering, Electrical Department,
Public University of Navarra, Campus
Arrosadia s/n, Pamplona 31008, Navarra,
Spain
E-mail: hermoso@upna.es,
vajra@upna.es, monica.aguado@upna.es,

D. P. Martinez Cid, IBERDROLA, Gardoqui 8, Bilbao 48008, Spain