＊Notice：All copy rights reserved to the KTI and G．C Mir

 전자파 대책을 위한 접지체계
1 접지체계 개론

가．컴퓨터 접지의 다양성

자동화 기기가 전자기적인 에너지에 의해 손상을 입거나 오동작을 일으키지 않도 록 하는 방법에는 차폐（Shielding）．필터링（Filtering）．접지（Grounding System） 가 있다．이중에서 일반인들의 생각과 달리 가장 어려운 것은 접지이다．접지의 경우 시스템의 구성과 크기와 사용 주파수에 따라 접지방식이 달라질 수 있기 때문 이다．물론 기본적인 방법이 달라지는 것이 아니라 반드시 수많은 변수가 있다． 뿐만 아니라 발전소로부터 송전선을 거쳐 기기내 PCB 까지의 접지계통도를 생각해 보면 복잡하고 어려워진다．따라서 접지는 결코 접지봉을 지하에 매설하거나 박는 것이 아니며 매우 범주가 넓다．이 계통상에서 단 1 곳에서만 잘못 접지해도 자동화 기기 즉 프로세서 제어기기는 오동작하기 쉽다．접지와 관련된 계통과 주요 문제점 은 다음과 같다．

（그림 5－1）전력계통에 따른 접지의 역할

계통별 주요사항

G1 ：기기의 외함접지．인체안전．제어설비의 접지，낙뢰 및 정전기 방지 G 2 ：낙뢰．외함접지，지하케이블 접지．제어설비의 접지（컴퓨터 또는 센서） G3：인체안전을 위한 접지，제어설비（각종센서 및 통신）의 접지，낙뢰
G4－5 ：전력감시장치，각종 센서．인체안전，낙뢰， 3 상 또는 상변환－ 2 차측접지．
UPS 및 각종 전원장치와 전산실의 접지，낙뢰방지용 접지．정밀계측기 접지선 처리．건물 고유접지와 철 구조물과의 연결여부．낙뢰접지와 시 스템 접지와의 연결여부．고충건물 충간 장비의 배열과 접지．대헝공장

侏韓國技術研究所

의 공장간 전산망의 접지처리，장비의 증설이나 신설시 접지선 연결방법， 고층건물에서 전산실 선정위치．실드룸이 있는 건물에서 접지방법． 1 개 의 건물에 교환기와 같이 대형장비가 있는 경우의 접지방법， $1-3$ 개의 랙으로 된 이동통신 기지국사와 같은 기기가 설치되는 경우 기존 건물 접지를 사용할 것인지 새로욘 접지를 해야 할 것인지 결정여부，건물이 다르고 통신망이 있는 기기의 접지 방법을 어떻게 할 것인가？
G6－7 PCB 의 DC Common과 함체접지（건물접지）와 접지처리방법，SMPS 또 는 트랜스와 정류회로 전원장치와 접지방식의 차이．통신 Port와 실드선 의 접지처리 방법， PCB 상에서 부품의 배열， VCc 와 DC Common선 의 배열，프로세서 제어기기의 센서선 처리방법，부품의 배열 방법．접 지 루프의 최소화（크기，숫자）방법．전원선 및 통신선의 배관방법．대 전류 사용기기 주변에서 모니터의 화상 변화를 일으키는 경우 등 접지는 위와 같이 많은 경우가 있으며 다양하다．

4．접지의 목적

접지의 근본적인 목적은 시설물과 인체를 보호하고 누전에 의한 화재를 방지하며 기기간의 전위차를 조절하기 위한 것으로，만일 접지가 올바르게 되지 않으면 앞서 의 목적을 달성할 수 없다．접지의 목적 중 안전（Safty）이란 전원선의 함체단락이 나 누전에 의해 함체가 전위를 갖게 될 때 사람이 만겨서 전기적인 쇼크를 받거나 전류가 홀러 자율신경계의 근육이 멈추거나 화상을 입게 되는데 이를 방지하기 워 한 접지를 말하며 기기의 외함이 대지와 등전위를 유지하기 위해 하는 접지를 의미 한다．

접지의 목적은（그림 5－3）에서 보는 바와 같이 크게 4가지가 있다．
－전원의 함체단락시 기기와 인체의 안전
－낙뢰방지
－회전 운동체의 대전된 전하의 방전경로
－전자기기에서 방사되거나 유입되는 불요 전자파의 By Pass 경로
기기의 안전에 있어 〔그림 5－3（a））와 같이 상용전원이 절연불랑 등 여러 원인 에 의해 함체에 단락되었을 때 퓨즈와 접지선을 통해 기기의 안전을 도모하는 데도 이용된다．〔그림 5－3（b））에서 보는 바와 같이 낙뢰유입시 유입전류의 바이패스 경

秼韓國技術研究所

Signal	Power	Safty
Ground	Ground	Ground
(Low Level)	(Relays.	Motor)

(a)접지의 기능별 구분

(b)사용기기별 접지의 분리사용
(그림 5-2) 회로상에서 접지의 다앙한 기능

로로 사용되며, 〔그림 5-3 (c)]는 회전체의 운동에너지에 의해 대전듼 전하가 접 지측으로 흐르도록 하기 위해 접지를 한다.

최근 들어 추가된 접지목적으로 (그림 5-3 (d))에서 보는 바와 같이 기기내부에 서 발생된 불요 전자파와 외부에서 유입된 서지 둥의 전자파 에너지를 접지측에 흐 르도록 하기 위해 접지한다.

이와 같이 시스템의 접지를 한다는 것은 에너지 전달에 있어 이상적인 것은 못되 더라도 인체의 보호, 기기 및 전자부품의 손상방지와 기기의 전자파에 의한 오동작 을 방지하기 위해 대부분의 전자장비를 접지한다.

2 컴퓨터 접지의 용어정의와 접지체계(사례중심)

가. 접지의 용어

접지에 대한 용어는 원서를 보면-핵마다 다르고 유사한 단어가 많다. 여기서 말 하는 용어의 정의는 동사(Verb)가 아니고 명사(Noun)이다.
(1) Ground: 영문에서는 단지 다른 단어를 보조하기 위해 사용되는데, 일례로 다음에 설명될 Ground Loop라는 용어가 있다.
(2) Gorund Loop: 접지루프로 번역하며 자동화 기기의 오동작과 가장 관계가 깊은 용어로 이는 접지를 2곳에 하고 통신선의 편조선으로 기기의 함체가 연 결될 때 이를 접지루프라 한다.

(그림 5-4] Ground Loop의 일례
접지 루프는 위 그림의 장비간의 예를 제의하고. 미시적으로 보면 시스템내 PCB 간에 또는 PCB 내 DC 공통선 (- 선)에 의한 루프도 장비의 신뢰성에 중요한 요소 로 작용한다.
(1) Grounding Loop Coupling(접지루프에 의한 결합)

(그림 5-5) 전자파의 결합

컴퓨터나 프로세서 제어기기의 오동작은 대부분 접지루프에 의한 결합에 의해 발 생되는데 이는 2 개이상의 접지루프가 존재할 때 상호 인덕턴스나 접지선의 면적과 길이에 따른 용량성 결합을 의미한다．
（2）Earth（일반적인 의미의 접지）
접지봉，접지판，접지망을 땅에 묻어 낙뢰전류．누전전류．잡음전류，대전전류 등이 전위가 낮은 대지 측으로 용이하게 소산될 수 있도록 경로를 제공하는 것．
（3）Reference
대지에 대한 상징적인 0 V 기준전위를 말하며，장빈 시스템에서 기준이 듸는 전위를 말한다．
（4）Return（궤환선）
2선에 의해 신호나 에너지가 전달뒬 때 전위가 낮은 선 즉（neutral 혹은 一선） 을 의미하는데，동축선로의 경우 외부의 편조선을 말하며，일반적으로 에너지원으 로부터 출발된 전하가 부하를 거쳐 되돌아 오는 측을 말한다．
（5）Bonding
2 개의 도체를 낮은 임피던스를 갖도록 연결하는 것을 의미하며，일례로 2 개의 철 재를 삽입식이나 조임으로 연결하여 금속간에 낮은 저항을 갖도록 별도의 동선 등 을 사용하여 학실하게 전도성을 갖도록 하는 것을 말한다．이는 때로 접지와 혼용 하여 사용되기도 하는데 용접보다 접촉저항이 크다．
（6）Floating
플로팅이란 〔그림 5－6）에서 보는．바와 같이 신호선의 접지（DC Common．혹 은 一）가 전기적으로 빌딩이나 설비접지선과 연결되지 않는 것을 말하며 이는 일 반적인 설비의 신호접지 형태이다．

이 방법은 접지선에 흐르는 잡음전류가 전도적으로 신호선에 유입되는 경로를 차 단하기 위해 분리설계한 형태이다．일반적으로 PCB 상의 DC 공통선（一선）과 함체 접지와는 분리가 원칙이며．필요시 용량성 접지（223용량）이나 100 uH 의 인덕터로 연결하여 접지시키기도 한다．
단．컴퓨터의 입출선은 입력측에서 관통형 컨덴서 둥으로 함체에 직접연결하면 아 주 좋은 특성을 나타내기도 한다．

(그림 5-6) Floating과 신호접지
(7) Single point ground(1점 접지)

1점접지는 나무 형태로 뿌리에서 가지로 가는 줄기와 같이 접지루프가 발생되지 않 도록 하는 접지 방식을 말하며 이는 앞서 설명한 접지선 루프에 의한 결합에 의해 전 자파의 용이한 전달과 결합을 막기 위해 가장 일반적으로 권고하는 접지 형태이다.

이에 대한 단점은 설비가 큰 경우 접지선의 길이가 길어지는 것과, 이에 따라 접지선이 굵어지고 비용이 상승하며, 복잡한 설비의 경우 기기의 설계와 설치 방법 에 따라 상당한 주의를 해야 한다는 점이다.

1점 접지의 예를 (그림 5-7)에서 나타내 주고 있는데 (a)는 신호선 접지를 별도 로 하여 설비 접지에 연결해 주고, 전원선을 통해 인출된 접지선을 함체에 부착하 여 안전을 위해 사용하고 있다.

물론 신호선 접지에 연결한 접지선은 전원선 접지가 아닌 별도의 Clean 접지선이다.
(그림 5-7)의 (b)는 다른 신호선 접지와 공통으로 연결되었을 때를 나타내 주고 있는데 이때 중요한 것은 다른 설비나 회로에서 발생된 잡음전류 In 이 접지선의 고 유저항(임피던스)에 의해 Vn 이라는 잡음전압 강하(Common Impedance결합)가 생긴다는 것이다. 따라서 In 성분이 회로측에 유입되지 않도록 할 필요가 있다.
(그림 5-7)의 (c)는 회로를 기능별로 분리하여 공통 임패던스에 의한 결합을 어 느 정도 낮출 수 있도록 한 구조이며, d 는 디지탈 회로에서 1 점 접지를 실시한 예 로서 전원선측에서 관통형 컨덴서를 사용하여 용량성 접지를 한 경우로 신호선과 궤환선이 함체와 Floating되어 있다.

(b) 잡음전류의 영항을 최소화한 1 점 접지

(a) 1점 접지의 기본구조

(c) 구역으로 분리하여 1점접지를 한 예

(d) 디지탈 회로예서 1점 접지의 일례
(그림 5-7) 1점접지의 예

이때 반드시 차폐용 편조선은 1 측만 접지시켜야 한다.

1점 접지는 주로 저주파 대역 (일반 PC 류까지로 대략 200 MHz 미만)에서 이용된다.
(8) 다점 접지

1점 접지에 대해 다점접지는 주로 고주파 기기에서 실시하는 방법으로 주로 신호 접지망에 많이 이용되며. 이는 접지망을 구조적으로 단순하게 해주는 장점이 있는 반 면 60 Hz 를 포함하여 저주파 노이즈가 신호회로에 전도적으로 유입되어 저주파 회로에 서는 많은 루프를 갖게 되어 사용할 수 없는 결점이 있다. 뿐만 아니라 방사성 노이 즈를 많이 발생시키며 외부 전자파에 대해서도 아주 민감한 결점을 갖고 있다.

이와 같은 결점에도 불구하고 회로의 구조와 부품의 취부상 어쩔 수 없이 사용하 는 경우가 있는데 이 경우 가능한 접지패턴에서 전위차가 발생되지 않는 위치에서 접지선을 연결할 필요가 있고, 접지도체를 잡음 주파수의 0.1 파장 이내가 되도록 연결해 주어야 한다.

(그림 5-8) 다점 접지의 구조
4. 접지선의 길이와 긁기

접지선은 일반적으로 여러 가닥의 동선을 사용하는데. 이에 대한 규정은 장비의 종류와 크기 등 여러 가지에 의해 결정되겠으나 규정은 참고만 하고 가능한 굵은선. 가능한 짧은선 (0.1 파장 -0.2 파장) 등이 필수적으로 고려되어야 한다.

접지선의 길이와 잡음주파수가 어떤 관계를 갖고 있는가를 인지하는 것은 상당히 중요하다. 접지선을 포설했을 때 이를 분포회로정수로 해석하는 것이 일반적인 접 근방식이다.
(그림 5-9)에서 보는 바와 같이 접지선을 포설하면 접지선은 자체 인피던스를 가지며 건물의 철구조물과 용랑을 갖게 되는데 이상적인 접지체계를 갖기 위해서는 접지선의 특성임피던스 $\mathrm{Zo}=\sqrt{\mathrm{L} / \mathrm{C}}$ 가 되었을 때 이상적이다. (그림 5-9)의 c 는 접

지도체의 주파수별 임피던스 변화를 나타내주고 있는데 접지선이 길 때는 많은 직, 병렬 공진특성을 갖게 되어 어떤 주파수는 접지선을 통해 대지측으로 바이패스 되 는데 다른 어떤 주파수에서는 임피던스가 커질 수 있다.
(그림 5-9)의 (a)는 접지선을 분포회로 정수로 본 등가회로이고, (b)는 임피던스 측면에서 본 이상적인 장비의 접지방법이며, (c)는 접지도체의 임피던스와 주파수간 의 상관관계를 나타내 주고 있다.

(a) 접지와 접지선의 평행 배열시 둥가회로

(—, 5-9) 접지선의 임피던스와 주파수 영향

그림 (c)에서 최초 공진 주파수를 나타나는 L 은 토탈 인덕턴스이고 C 는 접지선과 대지 또는 건물의 금속체와의 용량성분이며, R 은 접지선의 직류저항값으로 저주파 의 경우 주파수에 대해 독립적 (무시 할 수 있는 양)이라고 할 수 있다. 일반적으 로 접지선은 주로 동선을 사용하므로 도전성이 높아 $\mathrm{R} \ll \omega \mathrm{L}$ 이므로 수백 Hz 이상 에서나 정확한 값을 예측할 수 있다.
(1) 저주파 기기에서 접지방법
(1) 기구적인 접지, 안전선 접지, 전기장치의 접지선들을 각각 분리한 구조가 이상적이다.
(2) 전원 퀘환선과 신호전류의 궤환선을 1 차측에서 직접 묶지 않아야 한다.
(3) 저주파 접지망은 설비의 접지와 1 점에서 연결되어야 한다.
(4) 저주파 접지선 역시 접지선의 길이가 짧을수록 유리하다.
(5) 접지망의 접지선은 1 차 전원도체와 길게 평행으로 배선되어서는 안된다.
(2) 고주파 기기에서 접지방법
(1) 고주파 기기에서는 주로 함체가 기준 신호전위로 사용되는 경우가 많으 므로 함체간에 도전성이 좋고 넓으며 접촉저항이 쳐소화되도록 연결되어 야 한다.
(2) 다점 접지가 1점접지에 비해 고주파 회로(대략 500 MHz 이상)에서 대체 적으로 유리하다.
(3) 고주파 기기의 설치위치는 높은 층보다 낮은 총이 접지면에서 유리하나 안테 나 등이 있는 경우 케이블의 손실이 중요하므로 불가불 상층에 설치된다.

단, 이때 건물의 자체 접지를 사용하면, 낮은 충의 모든 긱, 1전자 기적으로 영향을 주어 불리하다.

(그림 5-10) 주파수 대역별 선택적 접지방식

다. 전자회로(PCB상) 에서 접지선 처리

미시적인 관점에서 볼 때 전자회로의 접지선 처리 방법이 가장 중요한 위치를 차 지하고 있다.

공통선 임피던스에 의한 노이즈 전달량은 루프의 크기. 루프의 수와 깊은 함수관 계를 갖는데 이유는 간단하다. 일반적으로 상용전원을 기기에 공급하면 회로에서 기기가 동작하면서 많은 고주파 성분의 에너지를 만들어 낸다. 만들어진 에너지는 패턴이나 외부 도체에 연결되면 안테나로서 동작하여 외부에 에너지를 방사하게 되 는 것이며, 반대로 외부에서 전자파를 인가할 때도 해딩 주파수의 에너지가 용이하 게 수신되어 기기의 오동작을 일으킨다.

따라서 다음 사항을 참조하여 회로상에서 접지처리를 해야 오동작없이 기기를 동 작시킬 수 있다.
(1) 4 충 이상 다충기판을 사용한다.
(2) 전원선용 필터는 사용대역이 대략 500 kHz 이상 20 MHz 이상에서 감쇠량을 가 지므로 해당 주파수 이하나 이상의 전자파 에너지에 대해서는 별도의 대책 부품을 선택하여 취부해야 한다.
(3) 신호선 필터의 경우 3단자 필터나 관통형 컨덴서와 페라이트 비드를 복합적으 로 삽입하여 보호하는 측 회로의 임피던스를 높이고 접지측 임피던스를 낮추는 구조로 회로를 설계하며, C. L의 용량은 통신속도에 맞게 선택할 필요가 있다. 이때 컨덴서의 1 측은 함체접지에 연결되도록 하는 것이 중요하다.
(4) 외부에 인출되는 각종 센서용 배선은 Twist를 원칙으로 하며, 검출용 OP-Amp 의 하단에 접지면을 충분하게 해주고 PCB 의 입력측에 부품을 배치한다.
(5) 센서선은 검출단에서 반드시 Floating시켜야 하며, 사용되는 OP-Amp는 단일 전원 방식보다 양전원 방식이 CM Mode Noise를 효과적으로 감쇠시킬 수 있다.
(6) 센서용 배선은 반드시 평형회로용 (Banlancing) 배선을 사용해야 한다.
(7) 신호선과 전원선은 반드시 분리하여 포선하고, 여러 종류의 배선이 있는 경우 성질이 같은 배선끼리 포선함을 원칙으로 한다.
(8) 부품의 Layout은 결합이 일어나지 않도록 순서대로 배선한다.
(9) 장비의 구입시 전자파 내성시험과 EMI시험을 거친 체품을 구입한다.
(10) 가능한 분리소자를 많이 사용하는 것이 좋은데. 신호선의 경우 광소자를 전원선의 경우 Isolation Trans를 사용한다.
(11) 접지패턴과 VCC 선은 가능한 한 넓게한다.
(12) 사용하지 않는 Edge Pin 은 접지면으로 활용하여 PCB 상에서 바이패스되는 노이즈 성분이 용이하게 접지측으로 통과되도록 한다.
(13) 전원 평할회로에 사융하는 코일은 Drum Type보다 Troidal Type을 사용하 는 것이 전자파의 유도에 적합하다. (누설자속에 의한 유도 및 방사량 증가)
(14) 바이패스용 리도가 있는 컨덴서의 용량은 높은 주파수에서는 104보다 102 또는 103 이 공진점이 높아 유리하다.
(15) VCc 와 DC Common(一선)은 가능한 PCB 의 상하에 넓은 면적으로 배열 하며 루프와 숫자가 작게 되도록 PCB Pattern을 설계한다.
(16) PCB Artwork은 CAD 로 하고 이후 수작업으로 마무리 또는 확인한다.

접지 루프를 줄이는 방법은 다음과 같다.

- 1점접지. CM Coil삽입, 2전원 방식, 광결합기 사용, 주파수 선택적인 접지

라. 접지체계
(1) 간단한 설비의 접지 및 전원선 처리

정밀장비를 많이 사융하는 단독 주택이나 작은 규모의 공장 등은 (그림 5-11)과 같은 구조로 접지 및 전원선을 처리한다.

지하에 접지봉이나 접지판을 가능한 깊고 대지와의 면적을 넓게 하여 매설하고, 220 V 인 경우는 $1: 1$ 절연트랜스를 사용하여 2 차측을 접지측과 연결한다. 일반적인 가정의 경우 한전선을 곧바로 가정에서 접지 없이 사용하는데 가정내에서 독립적으 로 전기가 사용되는 경우는 별다른 문제가 없다.

그러나 정밀계측기를 사용하는 경우 또는 다른 집과 통신망(LAN 등)을 이용하 는 경우(전화선은 $1: 1$ 트랜스가 입력단에 삽입되므로 관계없음)는 전원선의 2차측 1 가닥이 반드시 접지선과 연결되어야 한다. 만일 Neu-Gnd간에 전위차가 나면 정 밀계측기가 동작을 하지 않거나 Pre-Amp 등이 손상될 확률이 높다. 공장의 경우 대부분 강하 Trans를 사용하므로 이 때는 반드시 2 차측 접지를 해 주어야 프로세 서 제어기기가 오동작하지 않는다.

(그림 5-11) 간단한 공장이나 단독주택의 점지선 계통
(2) 중형 및 대형 빌딩의 접지계통

중형 및 대형 건물의 터파기 후 접지선들을 그림과 같이 망형으로 배열하고 각각 의 결점은 반드시 용접하고 구석과 중간중간에 다시 접지봉을 박아 대지와의 면적 을 높인다.

외곽에 다시 접지선을 깔아 낙뢰접지로 사용하고 내부는 장비의 신호접지로 사용 하는 방식이다. 이 방식 역시 2차측에 접지를 하여 Neu-Gnd간에 전위차가 1-2 V 이하로 한다.
이때 중요한 것은 별도의 실드룸이 있을 때는 건물측 접지 (전원선 접지)를 사용 할 수 없다.

왜냐하면 실드룸에 사용된 전원용 필터의 차단 주파수를 닞추기 위해 Cy 의 컨덴 서 용량을 높게 하여 누설전류가 많이 흐르게 되므로 누전 차단기가 동작하게 된다. 실드룸이 아니고 일반 전기 전자 기기에서도 때로 누전차단기가 떨어지는 경우에는 기기의 전원필터를 확인할 풀요가 있다.

공장내 기기의 신설이나 증설시 새로운 접지를 요구하게 되는데 이때를 대비하여 건물의 4 개소 이상 Clean(or Quiet Ground) 접지선을 인출시켜 이를 사용하는 것이 가장 이상적이다.

만일 별도의 접지를 매설하는 경우 기존 설비용 접지와 전위차가 나게 되고 전원 용 필터의 1 측이 접지되어 필터로서의 기능을 수행하지 못하게 된다.

따라서 별도의 접지는 반드시 기존 설비접지와 지하로 용접하여 연결해 주어야 한다.
(3) 통신망이 있는 건물의 접지졔계

건물내 1 개의 설비가 독립적으로 기능을 수행할 때의 접지는 앞서 설명한 바와 같이 단순한 편이다. 그러나 건물이 다르고 건물간에 통신망이 접속되는 경우 고려 해야 할 요소가 많다.

통신선의 보호를 위해 실드를 할 때 반드시 1 측만 접지를 해야한다. 만일 앙쪽 모두를 함체에 접속하면 매우 큰 접지루프를 만들어 저대역의 많은 전자파를 신호 선에 유도시켜 오동작을 일으킨다. 만일 신호선을 통해 유입된 전자파에 의해 통신 에 장애를 일으키면 관통형 컨덴서를 이용하여 함체측으로 접지를 시키면 안정된 동작이 확보된다.

[그림 5-12] 중형, 대형 건물의 접지체계

[그림 5-13] 통신망이 있는 건물의 접지체계
(4) 대형 설비의 낙뢰방지를 위한 접지체계

교환기와 같이 1 개의 건물에 매우 복잡한 설비가 복합적으로 있는 경우에 낙뢰에 의한 피해를 최소화하기 위해서는 시스템 간의 등전위 유지가 가장 중요한 요소이 다.

따라서 셀프간, 랙간, 열의 장비간에 벌도의 접지망을 장비 상단에 설치하여 많 은 낙뢰전류가 홀러 들어오는 가입자 회로(외부 가공선 등)측 랙과 다른 랙간의 등전위 유지가 낙뢰 방지를 위해 필수적이다.

$1=$ Bare copper wire TBK 10104 (50 md)
$2=3$ TFK $100508 / 08$ (25mm)
$3=$ Earthing cable $1053.522 / 1$ or 2
$4=$ To earth collection bar 70 mand

〔그림 5-14〕 시분할 교환기(AXE10)의 랙과 셀프의 접지체계 (늑뢰방지)
(5) 2 종의 접지선을 사용하는 경우의 접지계통

2 종 이상의 접지선을 사용하는 방법으로 다음 그림과 같은 예를 들 수 있다.
이 경우 접지의 용도를 달리하여 사용할 수 있는데 많은 장비가 복합적으로 신증 설되는 경우 혼돈을 일으키기 쉽다. 따라서 이 방법은 접지를 체계적으로 관리 할 수 있는 환경이 아니면 적용이 어렵고 경비가 많이 들며, 통신망을 구성하는 경우 대지케 환전류에 의한 오동작 우려가 높다.

(그림 5-15) 2종의 접지를 사용한 접지 체계

3 접지체계의 역사적 변천

가. 접지체계의 역사성

접지 방법은 과거에는 주로 인체의 안전을 위한 접지와 낙뢰방지를 위한 목적이 강조되어 설계되고 코드화되어 왔다. 최근에 들어 5 V 제어계통인 프로세서 제어가 주류를 이루면서 자동화 기기의 오동작이 빈번해지자 이를 효과적으로 방지하고자 하는 방향으로 접지체계가 발전하게 되었다. 따라서 기존의 국제규격이나 국내규격 으로 정해진 접지체계가 달라지게 되었는데 규정 등이 아직 수정되지 않아 과거의 방법과 다소 차이가 나서 현업에서 혼동을 일으키기도 한다.

일반적으로 지금까지 설치된 컴퓨터나 프로세서 제어설비의 접지체계는 다음과 같이 되어 있다.
이 방법은 전자기적으로 보아 가장 잘못된 방식인데 공교롭게도 실제 현장에서는 많이 사용되고 있는 접지체계이다. 이 접지체계는 인체안전을 목적으로 설계된 방 법으로 장비의 오동작 측면에서 보면 아주 잘못된 방법이다.

(그림 5-16) 고전적인 접지체계 (인체 안전을 목적으로 한 접지체계)

이같은 접지체계를 갖춘 경우 전자기적으로 크게 3 가지의 문제점을 갖고 있다.
첫째로 별도로 매설한 장비용 접지와 건물접지간에 전위차 Ve 가 존재하게 되어 잡음전류가 흐르게 되고 이 루프에 의해 신호선 등에 결합이 일어나 알 수 없는 원인에 의한 오동작을 일으킬 수 있다. 두번째로 중선선에 연결점 A 와 B 간의 전위 차 $\mathrm{V}_{A B}$ 가 발생하여 등전위를 유지시키기 위해서는 보조접지 도체의 크기를 극도로 크게 해야 한다. 일례로 급전되는 전류가 200 A 일 때 $\mathrm{V}_{\mathrm{AB}}=500 \mathrm{~mA}$ 를 대략 1 mV 로 낮추려면 전선의 굵기를 254 mm 로 크게 해야 한다. 100 mV 를 10 mV 낮추려 해도 38 mm 의 도체가 필요하다. 물론 접지저항을 거의 같게 하면 접지선의 국기가 유사해진 다. 세번째로 실드룸에 부착된 전원필터의 Cy컨덴서에 의한 누설전류가 수십 A 까 지 흐르게 되어 전원선의 평형(Balancing)이 무너져 60 Hz 상전의 3차하모닉 전류 분이 O 가 되지 않아 때로는 기본파 성분보다 클 때가 있고 이는 아주 심각한 문제 를 야기할 수 있다.

이와 같은 문제점을 해결하는 방법으로 일반적으로 점1에서 접지를 때어버리는데 이렇게 하면 국제코드에 어긋나게 된다.

〔그림 5-17〕 문제점을 제거시킨 Isolation Transformer를 이용한 접지체계

4．Isolation Tranformer를 이용한 접지

（그림 5－17）에서 보는 바와 같이 $1: 1$ 절연트랜스 즉．전자파 차단 트랜스를 이용하여 접지루프를 제거하여 접지를 하는 방법으로 컴퓨터 제조업체에서 많이 권 하는 방법이다．별도의 접지가 필요하거나 누설전류가 많은 기기를 대상으로 사용 한다．이는 중량이 무겁고 크며 값비싼 제품을 사용하게 됨에 따른 무리가 있으나 컴퓨터의 오동작과 필요 누전전류에 의한 차단기 동작을 막을 수 있는 장점을 갖 고 있다．〔그림 5－17〕에서 하단의 보조접지선을 땅 속으로 건물접지와 연결하는 것이 〔그림 5－16〕과 다르다．일반적으로 Isolation Trans는 2차측에서 중선선과 연결된다．

다．전원／접지 계통에 있어 인지사항과 접지에 의한 장애사례

（1）Hot．Net선이 혼재되었을 때 전자기적인 문제
초기에 대형 컴퓨터를 외국으로부터 직접 수입해와 외국인이 설치할 때 전원선의 활선과 중선선 및 설비 접지선이 바패면 기겁을 하는 것을 볼 수 있었다．

만일 배선에 있어 활선과 중선선 및 설비접지선이 바뀌게 되면 어떠한 문제점이 있는가를 살펴보자．물리학적으로 보면 모든 에너지는 높은 곳에서 낮은 곳으로 흐 른다．전기에너지 역시 전위가 높은 곳에서 낮은 곳으로 경로（외함 접지）만 있으 면 전류가 흐른다．다른 측면에서 보아 전류가 흐르는 경로가 있다면 폐루프가 존 재한다는 것이 되고 폐루프가 다른 신호선과 평행하거나 근거리에 존재하면 유도적 인 전자유도나 용량적인 정전유도가 일어나 기기를 오동작시킬 수 있다．〔그림 5－ 19］의（a）와（b）는 노이즈를 최소화시킨 접지 및 전원계통으로 시스템에 공급되는 전 원의 활선과 중선선이 바뀌지 않도록 한 구조로 적절한 방법인 반면，（그림 5－19〕 의（a）는 활선과 중선선이 바꿘 구조로 다소의 잡음전류가 기기간에 흐른다．（b）와 （c）는 중선선과 접지선이 바뀐 구조로 만일 같은 콘센트를 사용하게 되면 많은 잡음 전류가 홀러 오동작을 일으킬 확률이 높다．

결과적으로 전원의 활선과 중선선 그리고 접지선은 콘센트에서 바뀌지 않도록 배 선하는 것이 원칙이다．그러나 접지선이 없고 기기가 독립적으로 동작하는 소형기 기는 크게 문제되지 않는다．

[그림 5-18] 할선과 중선선 그리고 접지선이 바뀌지 않고 정상적으로 배선된 전원

(b) 중성선과 접지선이 바쎤 경우 (공통)

(a) 활선과 중성선이 바번 경우(공통/분리)

〔그림 5-19〕 활선. 중성선 그리고 접지선이 상호 바뀌어 전자기적으로 문제가 있는 배선
(2) 접지선 처리 잘못으로 정밀장비가 손상을 입은 사례
|례 1. 모 여ㄴㅜㅗㅅ에서 고가의 로직 분석기를 고장낸 사례
|례 2. 모 대착에서 네트웍 분석기가 정상적으로 동작하지 않은 사례
|례 3. 모 여누소에서 전치 증폭기를 고장낸 사례
ㄹㅖㅖ 4. 모 연구소에서 EMI Test Receiver를 고장낸 사례
상기 4가지 쳐례 모두가 접지가 잘못되어 발생된 예로 정밀계측용 장비를 취급하 \equiv 연구소에서 아주 빈번한 사례로 원인은 모두가 같다.
위 모든 장ㅂ:는 장비본체가 있고 외부에서 신호를 받아 분석하는 장비로 대부분 아 ㄴㅈㄱ은 신호틀 초단예 증폭단을 두고 있다. 원인을 보면 측정용 계측기나 신호원의 1 기중 하나는 접지가 되고 다른 하나의 기기가 접지가 듸어 있지 않아 발생한다.

(그림 5-20) 정밀 계측기가 고장을 일으키는 개념도

윗 그림에서 측정용 계측기는 접지가 되어 0 V 이고 피측정기 (로직회로, 프리암프. 토테나. LISN. SG)가 접지되지 앏았을 때 피측정기기의 의함은 대략 $110 \mathrm{v}(220 \mathrm{vac}$ 1기). 50 v (110 vac 기기) 정도의 전위를 갖는다. 이때 계측기의 컨넥터를 피측정 기에 연결하네 되면 전위차에 의해 연결하는 순간에 계측기의 입력에 매우 큰 순 |과전압이 인가되어 계측기의 초단 증폭기 등이 망실된다.
어떤 계측기는 전위차가 나면 아예 처음부터 동작을 하지 않는 경우도 있고. 처음 고 l를 주고 구입한 장비를 고장내면 이후 쇼크를 받아 아예 사용하지 않는 경우도 있다.
정밀 계측기를 이동하여 새로운 장소에서 사용하게 뒬 때는 우선 활선과 중선선. 발선과 접지. 중선선과 접지간에 전압을 측정하고 특히 중선선과 접지간에 접압이 v 이상 검출되면 계측기를 사용하지 말고 접지계통을 확인해야 한다.

례 5. 모타 성능 정밀 측정기의 오동작 사례 (접지관련)
(1) 현상

모터의 제 성능을 시험하는 여러 랙으로 된 장비가 시험실에서는 잘 동

작하다 현장에 납품한 후 때때로 오동작을 일으켜 시험을 하지 못하여 이에 대 한 원인분석과 대책을 의뢰받아 방문해 보니 장비설치 후 오동작을 일으키자 건 물접지와 별도의 접지를 잡고 갖가지 방법을 다한 흔적을 발견하였다.
2) 조치

배전반측에서 모든 접지를 끊고 장비측으로 루프시험을 하니 많은 곳에서 루프가 확인되였다. 1 점 접지를 잡기 위해 장비측에서 루프개소를 어렵게 찾 아 제거하니 장비가 어느 정도 안정되었다.
확실한 동작확보를 위해 컴퓨터간의 통신선에 전자파 대책을 보완하고 입출 력과 전력선에 대한 대책을 수립하여 안정된 동작을 하였다.

ㅖ 6. 전력감시장치 (Scada)의 오동작 사례(접지관련)

1) 현상

모 대기업에서 제작한 입출단이 700 점이 넘는 대형 전력감시장치가 설치 후 4 년동안 1 주일에 1 회이상 오동작이 발생하였다. 해당 지역을 방문하여 브니 154 kV 변전소내에 전력감시장치가 설치되고 여러 공장에 각각의 154 kV 변전소 및 전력을 종합적으로 감시하는 장비였다.
2) 조치

기본적인 시험과 정밀 측정을 거쳐 $1,2,3$ 단계에 걸혀 1 개월 동안 전자기 적인 대책을 완벽히 하여 상태는 많이 좋아졌으나, 1 달 또는 2 주에 종종 오 동작을 하였다. 평소에는 오동작을 하지 않다 변전소내 무효전력 브상용 컨 덴서 뺑크를 단속하면 오동작을 한다는 것이었다.

컨덴서 뺑크는 외부에 변압기와 함께 있는데 내부의 프로세서 제어기기가 오동작을 하므로 해당계통을 정밀점검하였은 한동안 원인을 찾지 못했다. 마지막으로 감시장치에서 외부로 인출되는 700 여개의 I/O를 하나씩 Line to Gnd를 측정해가니 690 여번째 배선이 접지와 단락된 사실을 알아냈다. 회로를 추적하여 해당 랙의 문을 여니 센서의 접속점의 절연재가 닳아 함체와 불완 전 접지되는 사실을 알아냈다. 해당 부위를 조치하고 44 지금까지 4 년여 동안 한번도 오동작을 하지 않고 잘 동작되고 있다.

볘 7. 한전 변전소의 제어용 단말 PC 의 오동작
(1) 상태

모 한전 변전소내 제어용 컴퓨터가 때때로 오동작을 일으키고 있었다.
(2) 조치

응급조치로 제어용 단말 PC 의 접지선을 Open시켜 정상적인 동작을 학보 할 수 있었다.

여기서 단말 PC 의 접지선을 Open 시킨다는 것은 접지루프를 제거시킨다 는 것을 의미하며 이는 해당 PC의 외함이 Floating되므로 함체에 손을 대면 약간씩 쇼크를 받아 국제 코드에 맞지 않겠으나 때로는 장비의 오동작을 방 지하기 위한 임시조치로 이 방법을 취한다.

응급조치 이후 정밀 조사를 하여 단말기에서 접지를 사용하도록 조치하였다.
사례 8. 선박 레벨 측정장치의 오동작 사례
(접지계통 및 순시과전압 소자선택의 잘못)
(1) 상태

일본 유명회사의 선박 레벨 측정장비가 당 시험소에 전자파 내성시험 의뢰 가 들어왔다.

측정시료를 전자파 무향실 설치하고 전자파 방사내성을 시험하기 위해 외부 에서 Amp 를 켜기만 하면 오동작을 일으켰다.
(2) 조치

상당한 시행오차를 거쳐 접지계통을 충분하게 검토하여 보니 아날로그 메타 의 눈금이 한 쪽에는 이상이 없었으나 리드를 달리하여 측정하니 접지측에 단락이 검출되었다.

도통의 방항성과 PCB 를 하나씩 제거해 보면서 확인한 결과 신호선측에 삽 입된 순시과전압 소자로 대용량의 제너 다이오드를 Line to Safty Ground (함체)간에 역방향으로 삽입한 사실을 발견하였다.

(그림 5-21] 순시과전압 보호소자의 삽입 잘못에 의한 오동작

순시과전압소자의 경우 사용위치에 따라 선택해야 한다. 이와 같이 단방향 소자 를 신호선이나 전원선의 입력단에 Line to Ground삽입하면 비록 역방향으로 삽입 되었다고 하나 잘못된 방법이다.

단 방향소자의 경우 양극성 임펄스에 대한 크램핑 효과가 있으나 부극성 임펄스 에는 동작되지 않으며, 또한 접지측으로부터 유입되는 모든 잡음전류가 신호선측에 곧바로 유입된다.

따라서 이 경우 양방향 소자. 바리스터나 어레스터를 삽입해야 한다. 단, PCB 에는 단방향 소자를 사용하여 과전압에 대한 대책을 수립하는 것은 가능하다.

시험시 일본인 기술자가 직접 참관하였는데 여러 번 고맙다는 말을 들었다.
순시과전압 소자의 선택은 응답속도, 전류내량, 정전용량. 누설전류, 사용가능 회수 둥을 고려하여 선택하고 적절히 교체해 주어야 한다.

라. 접지루프가 존재하면 왜 전자파에 약한가?
전자파가 공간적으로 접지루프에 결합되는 경로에 대해 알아보자.
다음 그림과 같은 2 개의 시스템간에 통신선이 있고 앙쪽 모두 함체접지 및 PCB 접지를 한 경우 〔그림 5-22〕와 같이 2 개의 경로가 존재하게 된다. 즉, 루프 ABCDEFA 와 $\mathrm{ABC}^{\prime} \mathrm{D}^{\prime} E F A$ 로 Common Mode 전류가 흐르며 이의 등가회로를 \{그림 5-23)과 같이 표시할 수 있다.

(그림 5-22) 폐루프에 평면파가 입사되는 경우

${ }^{-}$여기서 Cp 는 분포용랑이며. 이는 부하측의 기판과 함체간의 용랑을 말한다.
(그림 5-23) (그림 5-22)의 등가회로

등가회로에서 Vi 로 인한 부하양단의 전압 Vo 는 다음 식으로 표현된다.

$$
V_{0}=v_{1}\left[\frac{Z_{L}}{Z_{1}+Z_{0}+Z_{L}}\right]
$$

만일 등가회로의 E점에서 접지와 Floating시키면 Vo 는 다음식으로 표시된다.

$$
V_{0}=V_{1}\left[\frac{Z_{0}}{Z_{c p}} \cdot \frac{Z_{L}}{Z_{L}+Z_{v}+Z_{s}}\right]
$$

윗 식을 비교하여 플로팅을 하면 $\left(Z_{v} / Z_{\mathrm{cp}}\right)$ 만큼 나아지게 되며 $Z_{\text {. 와 }} Z_{\text {cp }}$ 는 주파가
높아감에 따라 값이 변하여 낮은 주파수 (대략 200 MHz 이하)인 경우는 V_{0} 는 낮으
며. 그 이상의 주파수에서는 오히려 커지게 되어 다점접지를 하는 것이 유리하다.
〔그림 5-23)의 등가회로에서 유도전압은 등가적으로 V,는 루프의 면적과" 외부 전자파 세기에 의해 정해지며 $\mathrm{Z}_{\text {。 }}$ 는 배선의 임피던스로 소스 임피던스 Z_{3}, 부하 임 피던스 Z_{i} 보다 작은 값이며 분포용량의 임피던스 $Z_{C D}$ 는 낮은 주파수에서 크다. 반면 에 높은 주파수에서는 급격히 줄어든다.

〔그림 5-24〕 공통선 접지저항에 의한 결합

(그림 5-25) 외부 전자계에 의한.DM결합

4 IBM에서 권고하는 컴퓨터의 접지체계

가. Computer Grounding System

(1) 전원에서 ADP 설비까지 (잠못된 예)

여기서 AC Unit라 함은 모터가 내장된 전기제품. 순시과전압이 발생되는 장비, 순간적으로 전압강하가 일어나는 장비류를 말하며, 대형 모터 기동시 발생하는 High Inrush Voltage Drop이 컴퓨터에 영향을 줄 수 있는 장비를 말한다.
(2) 권장하는 컴퓨터 전원계통

전원선을 통한 전도성 노이즈를 저주파에서 최대 140 dB 까지 차단하여 Aircon 등 모터류에서 발생되는 전자파와 분리한 구조

4 IBM에서 권고하는 컴퓨터의 접지체계

가. Computer Grounding System

(1) 전원에서 ADP 설비까지 (잘못된 예)

여기서 AC Unit라 함은 모터가 내장된 전기제품. 순시과전압이 발생되는 장비, 순간적으로 전압강하가 일어나는 장비류를 말하며. 대형 모터 기동시 발생하는 High Inrush Voltage Drop이 컴퓨터에 영향을 줄 수 있는 장비를 말한다.
(2) 권장하는 컴퓨터 전원계통

전원선을 통한 전도성 노이즈를 저주파에서 최대 140 dB 까지 차단하여 Aircon 등 모터류에서 발생되는 전자파와 분리한 구조

ㄴ. Isolation Grounding (분리접지)이란?

Isolation Grounding이란 Isolation Transformer의 뛰어난(감쇄량 춰대 140 dB) 저주파 차단특성을 이용하여 전원의 급전측과 전자기적 노이즈의 전도성분을 효과 적으로 차단하는 방법을 말한다.

때때로 컴퓨터 제조업체는 컴퓨터접지를 통한 잡음유입과 낙뢰를 방지하기 위해 별도로 설치해 줄 것을 요구하는데 이는 National Electric Code Articles 25026과 250-81에 위배된다.

이와 같이 분리접지를 한 경우 별도로 인출된 컴퓨터접지와 건물접지점을 땅속을 통해 용접하여 주는 것이 필요하다. 그림에서 보는 바와 걑이 컴퓨터용 접지와 건 물접지와 전위차가 나면 인체를 통해 누설전류가 홀러 다소 위험한 면이 있다. 물 론 컴퓨터 설치 바닥과 컴퓨터접지가 등전위일 때는 제외된다.

NEC 250-26에 따르면 모든 접지는 위 그림과 같이 묵도록 되어 있다.
인체안전을 우선적으로 고려한 접지방법으로 전자파 노이즈 결합측면에서 보면 다소 문제가 있다.

라. 3상 전원을 이용하는 설비의 1점 접지 예

앞서 설명하였듯이 컴퓨터 전원계퉁의 1점접지는 접지루프에 의한 결합을 방지하 기 윆해 단 1 점에 접지되도록 하는 것을 말한다.
(1) 여러설비가 있을 때 1점접지의 구조

1점 접지를 하면 접지선의 길이가 길어지고 이로 인해 고주파에서 접지선이 높은 임피던스를 갖게 된다.

1점 접지를 하면 접지루프가 없어져 유리한 반면 접지선의 길이에 따른 전위차가 2-3. 4-5간에 발생된다. 이 전위차를 낮추기 위해 그림의 점선으로 표시되는 23, 3-4. 4-5, 5-2 같이 등전위 유지용 도체를 연결할 수 있는데 이는 낙뢰방지 에는 적합할지 모르나 여러 개의 접지루프를 발생시킬 수 있어 주의해야 한다.
(2) 1점 접지시 문제점과 등전위 유지를 위한 Bonding시 문제점 (1) 기기간의 전위차 발생

(2) 기기간 Bonding으로 등전위 유지 \rightarrow 루프발생 \rightarrow 용도별 선택

(3) 도체의 공진특성으로 접지선 길이의 제한

Bonding선의 길이 $1 / 20$ 파장 이하로 할 것

마. 전산실 바닥처리(접지)

(1) 전산실 바닥의 신호용 기준 접지망 처리

(1) 바닥의 접지선을 전기적으로 낮은 저항을 갖도록 학실하게 연결한다.
(2) 건물자체의 금속과 분리한다.
(3) 바닥의 높이는 최소 30 cm , 최대 70 cm 이하로 하고 전산실이 넓을 때는 화재 방지용 격벽을 설치한다.
(2) 전산실 접지망(Grid) 연결법

(3) 전산실 바닥의 기준신호 전위유지용 접지망의 설치

Power Center

Perspective

Schematic
(1) 1-4까지는 일반 컴퓨터 시스템 모듈임
(2) 5 는 Green Wire로 장비안전을 위한 접지도체
(3) 6 은 전산실 바닥용 안전접지
(4) 전산실 바닥의 접지망과 설비접지의 연결구조

To Service Equipment

Optional Strap은 낙뢰방지 등의 경우 연결될 수 있으나 컴퓨터의 오동작 측면 에서는 반드시 단선(Open)되어야 한다.
(5) 접지선의 구조에 따른 임피던스 변화

Frequency in Megahertz

바. 절연 트랜스의 설치위치 및 설치방법
(1) 잘못된 절연 트랜스의 설치

(2) 보다 나은 설치항법(접지점을 분리)

(3) 이상적으로 설치된 경우

- 여러개의 모듈러형 전원실

출측 접지점은 짧은 연결 케이블이나 같은 신호 기준 전위의 접지망에 스트램으로 상호 연결될 수 있다. 이는 신호 기준 전위점의 낮은 전위차를 유지할 수 있으며 여러 전원 접지점 간을 1점 접지에 가까운 구조로 구성 할 수 있다.
(1) 절연 트랜스의 접지처리와 실드 케이블의 접지처리

차폐응 접지는:

- 접지선이 길면 임피던스 중가로 차폐에 부적합
- 접지선이 짧으면 임펄스 서지를 효과적으로 차단
- 차폐선의 1 측을 접지하는 1 점접지는 $1-10 \mathrm{MHz}$ 에서 비효과적일 수 있음
- 1 점접지로 효과룔 얻을 수 없거나 주파수가 높으면 다점접지가 요구됨

전원 Receptacle(절연 접지도체는 패널보드를 그낭 통과시키나. 서비스 접지단자에 직접 종단한다)

오롄지색 찰라 프리스틱울 절연용 접지선과 구분 (함체에 연곁안딤)

차. 차폐선 접지처리와 케이불의 종류에 따른 자기 차폐효과

(1) 교류자장에 차폐를 하지 않은 경우

(2) 교류자장내 동축의 1 측만 접지한 경우

(3) 동축의 양단을 접지한 경우

교류자장 차폐에 약간의 효과 있음.

(4) 트위스트를 하고 양단접지시(접지루프가의 형태만큼 줄어듬)

(5) 트위스트에 실드선을 사융하고 차폐선의 1 측을 접지한 경우 (1측 접지시 트위스트 효과에 도움이 되지 않음)

(6) 트위스트, 차폐 양단 접지시
(양단 접지시 외부자계에 의해 유도된 에너지가 분지되는 효과. 실드 전류 는 신호도체에 불평형 전압을 유기)

(ㄱ) 동축선로의 한쪽 접지를 한 경우
(동축 케이블에 의해 작은 루프를 발생시키나 매우 양호한 특성)

(8) 2선 트위스트선을 사융하고 1측만 접지한 경우
(단지 트위스트 선을 사용하여 좋은 효과 기대. 감이수에 따라 효과 증감)

(9) 트위스트 후 실드선 사용하고 종단측 실드선 접지
(1측 접지시 전장에 대한 차폐효과 상승)

(10) 트위스트 하고 차폐선 사용한 후 차폐선을 양측접지
(a) 1 MHz 미만의 주파수에서 양측에서 회로를 접지하면 접지루프가 발생하 여 외부 자계로 부터 쉽게 영항을 받는다. 노이즈 감쇄는 교류자장에 대 한 접지루프의 전위차와 민감도에 의해 제한을 받는다.
(b) 1 MHz 이상의 주파수에서 또는 케이블의 길이가 $1 / 20$ 퐈장을 넘는 경우 차폐 체의 양단접지가 보편적인 방법이다. 차폐선은 매 $1 / 10$ 파장마다 접지한다.

5 접지저항의 크기에 따른 낙뢰 보호톡성

가. 낙뢰의 발생과 피해

낙뢰의 발생은 급격한 기류변동과 온도변화에 의해 대기가 대전되어 있다 전위가 낮은 구름 간에 또는 대지로 방전하는 현상을 말하는데 낙뢰는 인류역사와 함께 해 왔고 이에 대한 많은 연구도 수행되었다. 통상적으로 낙뢰의 전기적 에너지는 엄청 난 양으로 해마다 여름이면 구릉지가 많은 도시의 가전제품 등에 많은 피해를 준다.

(그림 5-26) 낙뢰의 발생과 유도

ㄴ. 낙뢰 보호회로

일반적으로 건물상단에 피뢰침을 부착하여 대전된 구름의 전하를 대지로 방전하 기 전에 대지로 홉수될 수 있도록 하는 물리적인 방법이 있으며, 전자회로적으로는 순시과전압 보호소자를 사용하여 회로를 보호한다.

순시과전압 보호소자는 응답속도, 전류내량, 정전용량. 누설전류에 따라 선택되 며 삽입위치는 전원선과 통신선의 입력단에 삽입한다.

일반적으로 많은 사람들이 낙뢰보호 소자의 삽입위치를 잘못 알고 있는데 순시과 전압 보호소자는 선간 즉, 활선과 중선선에 삽입하는 (Normal Mode) 것보다 1선 과 대지간(Common Mode)에 2개를 삽입하는 것이 중요하다.

뿐만 아니라 낙뢰의 의사시험시 높은 전압을 인가하면 과전압보호소자의 특성을 완 전하게 시험하는 것으로 생각하기 쉬우나. 오히려 낮은 전압(대략 $2 \sim 4 \mathrm{kV}$)으로 반복 적인 시험시 과전압보호소자가 동작하지 않는 경우가 많으므로 유의할 필요가 있다.

또한 닉뢰 다발지역에서는 발생빈도수에 따라 과전압 보호소자를 교체해 줄 필요 가 있다.

(a) Surge protection circuit for Power line

(b) Surge protection circuit for Signal line
(그림 5-27) 전원선과 통신선의 낙뢰 보호회로

다. 접지저항의 크기에 따른 낙뢰보호 톡성변화

낙뢰보호는 접지저항의 크기와 매우 밀접한 특성을 갖는다.
다음 그림에서 보는 바와 같이 같은 회로에서 접지저항이 4.5옴인 경우와 1.5옴 인 경우를 비교했을 때 보호회로 후단의 2 차측 전압이 $18.5 \mathrm{~V}, 13.7 \mathrm{~V}$ 로 4.5 V 정도 보호특성이 우수한 것을 알 수 있다. 따라서 접지저항은 낮게. 접지선의 굵기는

굵게. 접지선의 길이는 짧게 하는 것이 낙뢰 및 전자파로 인한 오동작을 최소화할 수 있다. 또한 전원선과 통신선 초단에 선간에 삽입되는 보호소자로 제너 다이오드 는 절대 사용할 수 없으며, 3 극 어레스터나 바리스터를 사용해야 한다.

6 컴퓨터의 정보보안

가. 정보보안의 개념

정보보안이란 사용중인 컴퓨터로부터 방사되는 전자파에서 상대방의 필요한 정보 를 빼가는 것에 대한 방지기술의 일종으로 일반적으로 TEMPEST라 부르고 등의 어로 Compromising Emanation가 사용된다.

실 사례로 구 소련내 미대사관 도청사건을 비롯하여 국내에서도 최근에 문제되었 던 사례가 있다. TEMPEST의 어원은 Violentstorm이 아니고 Temporary Electro -Magnetic Purturbance Emanation System Technology의 약자로 알려져 있 다. TEMPEST는 Red와 Black으로 구분되는데 전자의 경우 전기•전자회로. 부 품, 장치, 시스템에 의한 전기신호정보가 최고의 기밀에 해당될 때 제한되는 상한 값이며, Black은 기밀이 아니고 단지 암호화(Encryted)된 정보 전송시 제한되는 상한값이다. 이와 관련된 규격은 각국의 외교기관. 군관계의 비밀통신과 관련되므 로 입수하기 곤란하지만 알려진 관련규정은 다음과 같다.

- NACSEM 5100A

여기서 NACSEM은 National COMSEC/EMSEC을 말한다.

- 문서구분:

QSTAG 244 : 극비문서. Neclear Survivability, NEMP
QSTAG 620 : 위 관련 Instruction
TEMPEST의 성능평가는 기기롤 TEMPEST Shield를 한 결과 누설신호 레벨의 감소량을 측정하는 것으로 송수신기로는 컴퓨터를 사용하는 시스템을 기준으로 측 정하는 것이 보편화되어 있으며, 미국의 경우 기기별로 개별적인 인증제도를 운용 하고 있어 연방정부와 공공기관에서 시행하고 있다.

미국에서 제조 판매되고 있는 TEMPEST용 수신시스템은 $1 \mathrm{kHz}-12.4 \mathrm{~Hz}$ 까지 협대 역 IF신호를- 140 dBm 까지 수신할 수 있는 고감도 수신기로. 전용장비로는 AEL Depense Co. 의 제품과 WJ -8999장비가 관련규정을 만족하고 있다.

나. 제한값

TEMPEST용 실드는 일반장비보다 한층 높은 (그림 5-29) 와 같이 실드를 규정 에 요구하고 있으며, TEMPEST방지를 위해 기기의 방사 전자파의 제한치도 일반 적으로 상용기기에서 요구하는 기준보다 횔씬 닞아 (그림 5-30)과 같다.

TEMPEST Red

(그림 5-29) Shielding Box에 요구되는 (그림 5-30) 방사성 전자파 제한값 실드효과

다. 슈퍼 컴퓨터의 정보보안

슈퍼컴퓨터 Cray X-MP, Cray 2, CDC Cyber 205 그리고 Fujitsu VP 4000 등 을 정보 보안체계로 갖추기 위해서는 경제성 등을 고려하여 다음과 같이 권고한다.

(1) 실드룸은 모건물과 전기적으로 절연되며 분리된다.
(2) AC 덕트는 전기적으로 절연되며 전원선은 Honeycomb RF Vent를 통해 공급된다.
(3) 도어는 압축공기로 개폐된다.
(4) 출입문의 열쇠는 가변용 열쇠 또는 카드형 열쇠를 사용한다.
(5) 실드 덕트는 RF 적으로 완벽하게 차단되는 구조여야 한다.
(6) 환기를 위해 모건물로부터 연결되는 냉 난방구는 Honeycom으로 차폐되어 야 하며, RF 가 차단될 수 있도록 덕트의 길이와 단면적 등이 정해져야 한 다. ($1 / 10$ 파장 이하)
(7) RF 실드 케비닛은 기구적으로 슈퍼 컴퓨터와 차단할 수 있어야 하며 차단 후에도 내부적으로 완전히 분리된 상태에서 동작될 수 있어야 한다.
(8) 모든 입출선(IDS, 화재경보 둥)은 필터처리를 해야. 한다.
(9) 모든 실드설비의 접지선은 동선을 사용한다.
(10) 슈퍼 컴퓨터는 구조적으로 공간을 줄이고 정보가 누설되지 않도록 장비배치 에 주의를 요한다.

7 차폐접지

가. 차폐

케이블의 도체는 그 표면이 평활한지 않아 전계가 불균일하여 부분적으로 코로나 방전이 일어나기 쉽고 도체표면과 절연체 사이에 공극이 생겨 절연성능이 저하한다.

이 약점을 보강하기 위하여 도체위에 반도전성 카본지 등을 감아 전선표면의 전 위경도를 균일하게 한다.

절연체 위에는 금속피를 입히는데 케이블이 변형되었을때 절연지와 금속 쉬스간 의 밀착을 유지하지 못하여 공극이 생기는 수가 있다.

그러므로 절연체 위에도 도체 차폐와 같은 반도전층을 설치하여 전계의 불균형 발생을 방지한다.

CV 케이블에서는 절연체의 특성상 반도전층의 조그마한 돌기나 접촉불랑도 문제 가 되므로 22 kV 이상의 케이불에서는 반도전충도 폴리에틸렌 혼합물로 하고, 절연 층 성형과 동시에 상하반도전층을 같이 압출하여 제조한다.

결국 차폐는 도체 차폐와 절연차폐로 구분한다.

나. 차폐기준

단심으로서 $2,000 \mathrm{~V}$ 이상, 다심으로서 $5,000 \mathrm{~V}$ 이상의 케이블에는 반드시 차폐시켜 야 한다.

다. 차폐의 역할
도체 차폐는 도체와 절연체 사이의 공간에 가해지는 과도한 전압스트레스를 제거 하려는 목적으로 절연체에 설치되며 다음과 같은 역할을 한다.
(1) 전계를 케이블내로 제한시킴
(2) 전압스트레스를 고르게 분포시키고 표면방적을 극소화시킴
(3) 가공선로 또는 유도장애가 우려되는 케이블을 보호함
(4) 통신장애를 방지함
(5) 전격을 방지함(차폐층을 접지하지 않으면 전격의 위험은 증가될 수 있음)

만약 절연체에 차폐를 하지 않는다면, 전계의 일부는 절연체로 홉수되나 대부분 은 대기로 방전되며, 전계가 셀 경우 케이블 표면의 방전은 대기의 공기를 오존으 로 환원시키면서 케이블 쟈켓과 절연체를 파괴하게 된다.

또한 케이블이 지표면에 근접하여 있고 그 사이의 공간으로 전압스트레스에 의한 방전이 발생되어 오존을 발생시킨다.
여기서 지표면이란 금속전선관 또는 비금속전선관이 물기에 젖어있는 경우 등이 해당된다.

마찬가지로 차폐되지 않은 케이블이 축축한 곳에 있거나. 그을림, 그리스 등 도 전선의 얇은 막으로 덮혀있게 되어 전계가 국부적으로 제한되면, 대지로 방전되기 쉬운 부분으로 충전전류가 흐르므로 이때의 방전이 절연체 또는 쟈켓을 손상시킨다.

마. 전격

지하 덕트에 여러개의 회선을 각기 수용한 경우, 충전된 케이블 취급시 강한 전 계에 의한 전격을 방지하기 위하여 차폐케이블을 사용하는 것이 이상적이다.
전격을 학실히 예방하기 위해서는 차폐층의 저항이 낮을수록 좋다.
이를 위하여 적당한 굵기의 접지선을 차폐층에 추가시키는 방법이 있으며. 위와 같은 전격예방조치는 지하덕트 내의 케이블 뿐만 아니라, 지상에 포설된 케이블에 도 케이블 취급작업이 있으면 가능한 한 적용시켱야 한다.

바. 접지형 차폐케이블

차폐케이블을 포설할 때 차폐총은 반드시 접지되어야 하며 도체가 각기 차폐되었 을 때는 각각 모두 접지되어야 한다.

접지선이 포함된 케이블은 케이블 양쪽 끝에서 접지선과 차폐층을 연결해야 한다.
안전을 위한 가장 확실한 방법은 차폐층을 케이블 양쪽 끝에서뿐만 아니라 중간 에 연결한 부분에서도 접지시키는 것이다. 그러나 케이블 길이가 짧고 단심일 경우 는 한쪽 끝에서만 접지하는 것이 이상적이다.
차폐총을 연결할때는 차폐충의 저항이 영구적으로 적어지도록 해야 한다.
크램프를 이용한 기계적 연결보다는 납뗌이 우수하며 납땜과 볼트. 넛트를 조합

하여 연결하는 것이 가장 이상적이다.

사. 도체 차폐층의 접지효과
단도체의 차폐충을 접지하는 데는•세심한 배려가 필요하다.
단도체의 경우는 도체에 흐르는 전류에 의한 유기전압과 옆의 케이블에 의하여 유기되는 전압에 의하여 다음과 같은 결과를 초래하기 때문이다.
(1) 차폐층을 한군데 이상 접지하면 순환전류가 흐르게 되는데 그 전류의 크기 는 다른 케이블과의 상호 인덕턴스, 도체에 흐르는 전류크기, 차폐층의 저 항에 따라 결정된다.

그리고 이런 순환전류는 차폐충에 열손실을 유발하여 케이블의 허용전류 를 감소시킨다.
(2) 차폐선을 한쪽만 접지시키면 차폐충에 전압이 발생되는데 전압의 크기는 다 른 케이블과의 상호 인덕턴스, 도체에 흐르는 전류 접지된 부분까지의 차 폐층 길이에 따라 결정된다.

이 전압은 항상 방전에 의한 위험을 내포하고 있으며 안전전압 이상으로 높아지면 인체에 치명적 영향을 주게 된다.

아 차폐층의 다중접지

가능하다면 신뢰도 및 안전을 위하여 차폐층을 다중접지시키는 것이 이상적이다.
이렇게 하면 케이블의 리액턴스도 작아지고 인체에 치명적 영향도 주지 않게 된 다.

다중첩지에 관한 방법은 절연체 두께. 차폐층 도전성, 도체간격, 흐르는 전류 등의 변수가 복잡하므로 구체적으로 나열하기 어렵다.

다만 아래와 같은 경우의 단도체는 차폐층을 다중접지하는 것이 바람직하다.
(1) 125 mm 이하의 차폐케이블로서 각상이 각각 독립된 덕트내에 포설된 경우 ※ 케이블의 각상의 전선을 자성체 전선관에 각각 포설하는 것은 높은 인덕 턴스로 인하여 좋지 못하다.
(2) 한 덕트 내에 차폐케이블 3상 모두를 함께 포설하는 경우
(3) 다중차폐충을 갖는 케이블

자. 차폐층 단일접지

아래 표는 단도체 차폐층을 한쪽에만 단일접지했을 경우에 발생되는 전압이 25 V 이하로 되기 위한 케이블규격 및 최대길이를 표시한다.

〈표 5-1〉케이블 규격 및 최대길이

공칭 단면적 (mm)	덕트당 1 상포설	덕트당 3 상포설
50	446 m	$1,513 \mathrm{~m}$
100	322 m	1.076 m
250	212 m	671 m

상기표의 길이는 조건에 따라 길어질 수 있다. 예를 들면, 케이블에 정격전류 이하로 전류가 흐르거나. 차폐층의 중간부분을 접지시켰을 경우는 길어진다.

케이블에 전류가 흐르면 전항에서 설명한 바와 같이 차폐층에 전압이 유기되고. 이 전압에 의해서 와전류가 발생되거나, 순환전류가 차폐층과 대지로 흐르게 된다.

와전류에 의한 손실은 상대적으로 작다. 3 상케이블의 경우 손실은 대락 도체손 실의 $3 \sim 5 \%$ 정도이다. 3 상케이블이 하나의 공통차폐층으로 구성되면 순환전류는 차폐충에 나타나지 않고 단지 와전류만 발생될 따름이다. 그러나. 단심도체의 경우 는 도체와 차폐충이 변압기의 원리와 같은 작용을 하기 때문에 상황이 달라진다. 즉 도체는 변압기 1 차측과 같아 차폐층은 2 차측이 되어 도체에 전류가 흐르면 차 폐층에 전압이 유기된다. 이 경우 차폐충의 한쪽 끝을 접지하면 반대쪽에 대지전압 이 형성되고 앙쪽 끝을 접지하면 순환전류가 흐르는데 이때 $I^{2} R$ 에 의하여 손실과 열이 발생된다. 이러한 손실은 케이블 규격이 작을 경우 별 문제되지 않으나 도체 의 크기가 아주 큰 IPB (Isolated Phase Bus Duct)긑은 경우는 동손보다 커지는 경우가 있다.

단심케이블에서 차폐층을 양쪽 접지한 경우 손실은 대략 80 mm 에서 $7 \sim 12 \%$. $1,000 \mathrm{~mm}$ 에서 $46 \sim 49 \%$ 이다.

ime in Honths
＜그림 8＞，：
1．Nean resistance to grounding of eight
metal pipes．each 19 mm in diameter and
driven 0.9 m into the ground．
2．The mean resistance of the same pipes
driven 3.0 m into the ground．

Classification	Resistivity $\alpha^{\prime} Q-m_{i}^{1}$ ！	$!$ Features
Low Resisti． ：ity Zone	$0<100$	Lowlands at the mouths of rivers or by the sea．lisually abundant in water．
Medium Resis ：inty Zone	100 $\leq 0 \leq 1.000)$	Midland plains where ground water is not so difficult to obtain
High Resisti－ ney Zone	1．000 0	Hilly zones．piedmont distric：s and high lands where drainage is good．

〈吾 4〉：：ilassification of Soil Resistivity

3）계걸벽 접지저항 변화（Fig 12）	Temperature	$\begin{gathered} \text { Ground } \\ \text { Risistinty } \\ (\Omega \cdot \mathrm{m}) \end{gathered}$	Rate
	$20 \cdot \mathrm{C}$	i2	1.0
4）대지저항의 분류（Fig．9）	$1{ }^{\circ} \mathrm{C}$	引	i．4
	$0 \cdot \mathrm{C}$	120	1.5
	$0 \cdot \mathrm{C}$（ive）	50	4.2
5）수질ㅇ\｜l 따론 저항율（Table．10）	$-{ }^{-1} \mathrm{C}$	（1）	11.0
	－1．0＇C	3.20	15.9

UI $250^{\circ} 0=\forall \quad 1.0 \times{ }_{Z}\left(\begin{array}{c}\text { U } 0 Z\end{array}\right) 800^{\circ} 0=0$ I 단．In ：과전류 차단기의 정겾전류

$((((\sqrt[3]{2}) 1))$

〈그망 11》

$\begin{aligned} & \text { 라) Counter poise 팡식시 } \\ & \text { Grach } 3: \sigma R \text { Cunce For Counterpoise Ground }\end{aligned}$
〈S1 ß

